An algorithm for automated analysis of ultrasound images to measure tendon excursion in vivo.
نویسندگان
چکیده
The accuracy of an algorithm for the automated tracking of tendon excursion from ultrasound images was tested in three experiments. Because the automated method could not be tested against direct measurements of tendon excursion in vivo, an indirect validation procedure was employed. In one experiment, a wire "phantom" was moved a known distance across the ultrasound probe and the automated tracking results were compared with the known distance. The excursion of the musculotendinous junction of the gastrocnemius during frontal and sagittal plane movement of the ankle was assessed in a single cadaver specimen both by manual tracking and with a cable extensometer sutured to the gastrocnemius muscle. A third experiment involved estimation of Achilles tendon excursion in vivo with both manual and automated tracking. Root mean squared (RMS) error was calculated between pairs of measurements after each test. Mean RMS errors of less than 1 mm were observed for the phantom experiments. For the in vitro experiment, mean RMS errors of 8-9% of the total tendon excursion were observed. Mean RMS errors of 6-8% of the total tendon excursion were found in vivo. The results indicate that the proposed algorithm accurately tracks Achilles tendon excursion, but further testing is necessary to determine its general applicability.
منابع مشابه
The use of normalized cross-correlation analysis for automatic tendon excursion measurement in dynamic ultrasound imaging.
The work describes an automated method of tracking dynamic ultrasound images using a normalized cross-correlation algorithm, applied to the patellar and gastrocnemius tendon. Displacement was examined during active and passive tendon excursions using B-mode ultrasonography. In the passive test where two regions of interest (2-ROI) were tracked, the automated tracking algorithm showed insignific...
متن کاملAutomatic measurement of instantaneous changes in the walls of carotid artery with sequential ultrasound images
Introduction: This study presents a computerized analyzing method for detection of instantaneous changes of far and near walls of the common carotid artery in sequential ultrasound images by applying the maximum gradient algorithm. Maximum gradient was modified and some characteristics were added from the dynamic programming algorithm for our applications. Methods: The algorithm was evaluat...
متن کاملA Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures
Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...
متن کاملAutomated differentiation of benign and malignant liver tumors by Ultrasound Images
Background & Aims: Early detection and reliable differentiation of benign and malignant liver tumors could lead to improved cure rate and costs. Ultrasound image (US) is a convenient medical imaging method for interpreting liver tumors. Visual inspection of ultrasound images sometimes is combined with error and needs biopsy to confirm whether a tumor would be benign or malignant. The aim of thi...
متن کاملChanges of the Patellar Tendon Moment arm Length in Different Knee Angles: A Biomechanical in Vivo Study
Patellar tendon moment arm length (PTma) changes at different knee flexion angles have not been determined in invivo studies. We aimed to determine PTma in four different knee angles using Magnetic Resonance Imaging (MRI) topredict in vivo changes in the moment arm length from different knee angles during running.PTma was measured as the perpendicular distance from muscle–tend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied biomechanics
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2008